San Diego, February 2, 2010 -- Nearly four decades after President Richard Nixon declared a "War on Cancer," the disease still claims the lives of 560,000 Americans every year, despite an annual expenditure of $5 billion by the U.S. government on research to battle it.
|
Although much progress has been made since Nixon's call to action in 1971, cancer research is made increasingly difficult by the vast amount relevant data, which is only increasing as scientists discover new drugs and interventions and continue to evaluate their relative benefits, risks and costs.
Now researchers from the University of California, San Diego division of the California Institute for Telecommunications and Information Technology (Calit2) and the UCSD School of Medicine have been awarded $2.6 million over two years from the U.S. National Institutes of Health’s National Cancer Institute (NCI) to prototype a cyberinfrastructure that would allow scientists to collect and interpret data from a variety of sources to compare the effectiveness of preventative measures, drugs, treatments and interventions.
The Cyberinfrastructure for Comparative Effectiveness Research (CYCORE) project for cancer research will be scalable, open-source and user-friendly. CYCORE will aggregate data from clinical trials, patient medical records, self-reported and objectively monitored social and behavioral data, data on cancer outcomes from regional cancer registries, and cost-benefit analyses.
“A unique aspect of CYCORE will be its focus on expanding the quality and types of data that can be incorporated into cancer comparative effectiveness studies,” said Kevin Patrick, MD, a professor in UC San Diego’s Department of Family and Preventive Medicine and the principal investigator for the Calit2 component of the project. “From the outset, a primary focus will be on tackling the problem of obtaining, in patients’ homes, objective person-level data on behaviors such as adherence to cancer medications, diet, physical activity, sleep, environmental exposures and quality of life.”
“These factors are enormously important in the course of medical treatment, but are almost always assessed through infrequent and after the fact self-reports,” he added. “To have these data in near-continuous form will greatly expand our understanding of who does well on what treatment, when, why and for how long.”
|
The Calit2 researchers are partnering with The University of Texas M. D. Anderson Cancer Center – the nation's foremost institute for clinical cancer care – on the $3.86 million Grand Opportunity grant. The multidisciplinary consortium of investigators will first determine the parameters of the project and then create the prototype cyberinfrastructure for data aggregation, integration, processing, mining, storage and retrieval.
Once the data acquisition systems and software have been developed, the M. D. Anderson team will beta-test the prototype in clinical trials. Another thrust of the project will be to develop related applications for the cyberinfrastructure, including a Web-based user interface, home and mobile phone-based sensing devices to gather real-time patient data, and the use of novel brain-based device methods for data analysis.
"CYCORE could be used across the whole spectrum of oncology research," says Wendy Demark-Wahnefried, a professor of behavioral science at The University of Texas and a co-principal investigator on the project. "It will allow us an opportunity to study various factors that heretofore we have not been able to study, such as the role that diet plays, or supplements, or secondhand smoke. It’s hard to capture those data and that’s why we need the expertise of the researchers at Calit2. As the CYCORE system expands in size and scope, the oncology community could upload the data from a vast number of clinical trials. By having more data points we’ll be able to better create models for prevention, treatment and recovery."
“UC San Diego has a unique combination of talent in the areas of biomedical and behavioral science, engineering, computer science, and informatics,” explained Lucila Ohno-Machado, MD, PhD, Chief of the Division of Biomedical Informatics and professor in UCSD’s Department of Medicine. “This combination enables the implementation of transformative projects such as CYCORE. A robust infrastructure for data sharing in biomedical research is long overdue, and CYCORE will be filling an important role in comparative effectiveness research, which is critical for the development of a sustainable healthcare model. Focusing on cancer is a great choice, as it is a data-rich domain for which some building blocks for efficient data integration and data analyses already exist.”
The CYCORE project will benefit from the unique visualization technologies based at Calit2, including the virtual-reality StarCAVE, where researchers wearing stereoscopic glasses can 'walk into' digitally rendered models of hyper-magnified biological structures. Calit2's HIPerSpace tiled-display wall – which features nearly 287 million pixels of screen resolution — makes it possible for researchers to look at large datasets on a massive scale, while tele-collaborating with other institutions in real time.
|
Media Contacts
Doug Ramsey, 858-822-5825, dramsey@ucsd.edu or Kimberly Edwards, 619-543-6163, kedwards@ucsd.edu
Related Links
Center for Wireless and Population Health Systems
Institute for Engineering in Medicine
M. D. Anderson Cancer Center
UC San Diego Department of Family and Preventive Medicine
UCSD School of Medicine